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A numer ica l  method is p resen ted  for  the solution of a s y s t e m  of equations for  nonsteady non- 
i so the rma l  motion of a rea l  gas in tubes, this p rocedure  based on the application of the so-  
called a s y m m e t r i c a l  explici t  d i f ference  schemes  of the grid method, which is cha rac t e r i zed  
by weak stabi l i ty  l imitat ions.  

When we consider  the phys ica l ly  important  fac tors  assoc ia ted  with the p resence  of heat  t r a n s f e r  with 
r e spec t  to an external  medium,  as well  as the r ea l  the rmodynamic  p rope r t i e s  of a gas in the solution of 
prac t ica l  p rob l ems  deal ing with the calculat ion of one-d imens ional  gas flows in tubes,  we find it n e c e s s a r y  
to cons ider  the genera l  equations of gas dynamics ,  in which the compre s s ib i l i t y  fac tor  Z0(P, T), the specif ic  
capaci ty  Cp(P, T), etc. ,  can be specif ied analyt ica l ly  or  in tabular  form.  

The la t te r  c i r cums tance ,  as well  as the complexi ty  of the ve ry  sys t em of par t ia l  different ial  equations 
leads to the p rac t ica l  imposs ib i l i ty  of achieving exact  analyt ical  solutions,  in connection with which it be -  
comes  n e c e s s a r y  to employ numer ica l  methods involving the use of compute r  calculat ions.  In this  case ,  to 
apply the grid method we must  t r a n s f o r m  the original  equations into a sy s t em of evolu t ionary- type  quas i -  
l inear  equations whose r ight-hand m e m b e r s  contain the second der iva t ive  of the square  of the p r e s s u r e  with 
r e s p e c t  to the th ree -d imens iona l  var iab le .  The f o r m  of the equation der ived in this ease proved to be ex-  
ceedingly convenient for  appl icat ion of the explicit  d i f ference schemes ,  both of the c lass ica l  type [1, 2], and 
also - pa r t i cu la r ly  - of the i r  modif icat ions,  based on the uti l ization of a s y m m e t r i c a l  d i f ference  equations.  
These schemes  were  effect ive in the numer ica l  solution of a r a t he r  c u m b e r s o m e  s y s t e m  of equations for  
the nonsteady nonisothermal  motion of a r ea l  gas in tubes. Exhibiting the advantages  of explici t  d i f ference 
schemes  - economy and s imple  logic - the d i f ference  schemes  considered below are  cha rac t e r i zed  by a 
weak s tabi l i ty  l imi ta t ion which p e r m i t s  a r a the r  la rge  t ime  in terval  % thus offer ing a rea l  poss ibi l i ty  of rea l iz ing  
these  s chemes  with a computer .  At the s a m e  t ime,  the modifications of the explicit  s c h e m e s , w i t h  use  of the 
a s y m m e t r i c a l  d i f ference  equations,  provide r a the r  high (approximately  of the o rde r  of 0~2)) deg rees  of 
accuracy  for the resu l t ing  numer ica l  solutions and we have a computat ion a lgor i thm which is analogous to 
the scheme of a two-point  running count. In this sense ,  the use of explicit  d i f ference schemes  and the cited 
modif icat ions of the grid method for  the solution of the specif ic  equations under  considerat ion proved to be 
m o r e  p r e f e r ab l e  than the implici t  s chemes  assoc ia ted  with the pivot method or  with i tera t ions  [6]. 

1). The nonsteady noniso thermal  flow of r ea l  gases  in tong conduits is descr ibed  [1] by the following 
sy s t em of equations: 

Ot 2a 2bG Ox ~ + G (ZoT) Z o+ T OZ~ GOT + bc G3T~Z~ OZ~ - - -  - -  n ( T * - - T )  ; ( 1 )  
OT Ox p2 OT 
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0--[-= P ~a  2bO Ox ~ + 6 -~x (ZoT) Zo + T OZ~ m + Zo GOT OT Ox + be p ~  OT 

P OZo 
- - n ( T * - - T ) ]  ( Zo OP l )} i  (2) 

Computer  Center,  Academy of Sciences of the USSR, Moscow. Trans la ted  f r o m  Inzhene rno-F iz i che -  
skii  Zhurnal,  Vol. 16, No. 2, pp. 308-315, Feb rua ry ,  1969. Original a r t ic le  submit ted April  29, 1968. 

�9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher [or $15.00. 

207 



- -  = - -  2bZoT62, 
Ox 

(3) 

where 

07"o \2 P OZo m Z o + T ~ ) ~ O ;  Z0=Zo(P,  r); 
h ~ 1 7.o OP 7.o 

�9 AR Kr~DR a = - -  f ", b - - - ~ R  ; c -  AR~ , m =  ," n - - -  
R 2gDf z Cpf cp cp[ 

(4) 

A f ini te-difference scheme of the explicit c lass ical  four-point  scheme was used in ea r l i e r  re fe rences  
[1, 2] to solve Eqs. (1)-(3). The existence of a t e r m  with the second derivative 02p2/0X 2 in the f i rs t  of the 
equations in (1)-(3) imposes a l imitation of the form T = O(h 2) onthe intervals h and T, f rom the conditions 
of stability, and this limitation with respec t  to Eq. (1), in l inear approximation, can be written as follows: 

-~-- ..(. bd min ( h,,~ ~ . G' h ) 

Since this inequality is not a r igorous  condition of stability for the sytem of equations (1)-(3), it per -  
mits us tentatively to evaluate the order  of magnitude for the step 7 which ensures  the stability of the (k 
+ 1)-th t ime layer  being calculated. The final magnitude of the interval T is correc ted  and subsequently de-  
termined in the process  of the pract ical  calculation of sys tem (1)-(3). As shown by calculation, inequality 
(4) imposes no r igorous  limitations on the t ime step T, with the exception of the cases  in which G becomes 
small or vanishes at some point of the integration interval. If G is small,  condition (4) resul ts  in such a 
small interval ~- that to real ize  the explicit difference scheme on a computer  would require  extensive 
machine time. When G is equal to zero,  the use of this scheme may resul t  in an unstable calculation pro-  
cess.  We see f rom Eq. (3) that these features  {the smallness  of G or the vanishing of the latter) are  governed 
by the constancy of the p ressu re  distribution in the specified integration interval or by the fact that the p r e s -  
sure varies  only slightly. Similar features  are  encountered, for example, in the problem of filling o r e m p t y -  
ing a gas conduit; in the problem of stabilizing tempera ture  and p ressu re  in a gas conduit that has been shut 
down [5], etc. We note that when P(x, t) = const for 0 -< • -< L and for  a fixed instant t, we obviously have 

06 OP 02P ~ 
6(x, t ) =  =o ,  - - -  o. 

Ox Ox Ox~ 

The original equations in the form of (1) and (2) exhibit the following feature in th i s  case: the t e rm 1/G 
02p2/0x2 yields an indeterminacy of the 0/0 type. Expanding this indeterminacy, with considerat ion of Eq. 
(3), we find 

2b . . . .  (G2TZo) = --  2b 2 
O Ox ~ 6 Ox 

To improve the stability of the f ini te-difference equations approximating the original system,  in these cases  
we can construct  explicit difference schemes based on the utilization of asymmetr ica l  difference equations. 
These schemes exhibit less r igorous  limitations on stability, as compared to the classical  explicit d i f fer-  
ence scheme, thus making it possible substantially to reduce the expenditure of machine t ime in the numer -  
ical computer  real izat ion of the corresponding boundary problems.  With a difference approximation of the 
differential operators ,  in this case the second derivative with respect  to x in the given differential equations 
is approximated nonsymmetr ical ly .  As a result ,  the portion of the second derivative with some weight a is 
extended forward,  i.e., to the (k + 1)-th layer  being calculated. A s imi lar  method has been described in [3] 
for l inear equations of the parabolic type; a s imi lar  scheme was used in the numerical  solution of a non- 
l inear equation for the case of isothermal  gas motion [4]. Here the method associated with the use of a s y m -  
metr ical  explicit difference schemes is extended to the case of a sys tem of quasi l inear differential equations 
(i)-(3). 

2). Denoting 

A G 0 (ZoT)_  Zo_+ T OZ~ G O T  q _ b c _ _  n ( T * - - T )  , 
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f rom (1) and (2) we obtain 

OT T 

Ot P 

1 O2P 2 
- - + A  

O P 4abG O x ~ 
Ot A 

A~(P,T) O~P ~ 
+ B  

4abG A Ox~ , where A, (P, T ) = ( Z  o + T ~ ) r n .  

(5) 

(6) 

We will apply the following difference approximation for the der ivat ives  in Eqs. (5) and (6): 

OP ) _ PL~+i - -  PL~ + 0 (~), (7) 
~ - ,  i,k T 

t l r l  - (  1 
Ox----~- ),.~ h L\ Ox L+~-.~ \ o-~-/,-+.A +~ (s) 

Using the representa t ion of the derivat ive OP2/Ox in the form of a Taylor  ser ies ,  we obviously find 

O~P ~ {x. t , t~ + O~ 

[ ' - - T  ) 0-~.. 0 -~ 1. (9) ( a_~k~ _ (  o~__L~ _ ~  
o~ l , _ + . f f  \ o~ 1,__~.~+, o x o t  ' 

Having introduced the pa ramete r  a ,  f rom (7) and (8) we find the following representa t ion  for the sec -  
ond derivat ive of the square of the p res su re :  

\ o - ~ ] , . ~ = - b  - ~ ,+_r.~ -~.~+, 

] oz O*V~( x,- -~t, t h +  0~) 
l - o  [( oP' 1 - I  + - -  

h L\ Ox 1,+~.~ \ Ox / ,_+.~ h OxOt 

Using the difference approximation for  the f i r s t  der ivat ives  of the form 

( d ~ )  ~,.~+ 2 - -  P i - i ,k+ l  + 0 (h~), 
---O-Z ~_ I = h -T'  t,+t 

_ P~+J,k-- , + O ( h ~ ) ,  
t h . ~  ~+ ~-, ~ 

+ 0 (h~). (10) 

we have 

( O2P ~ ~ a 
~x~ ) ,., - ;,3 

�9 2 p2 -- - -  (,~ ,k+l-- Pi,k+l - -  i,k + P~/+l,k) -[- - - - -  1 - - a  
2 ( �9 + h  ~ ) (P~- , .k - -  2P~,k + P,+,,k) + 0 a ~ . 

Considering (7) and (11), we obtain the following difference approximation of (5) and (6): 

AL * PLh+l --  Pt.~ 
T 

1 - - o  
h~ 

A,.~, T"~'+i---- Ti'h -- 

1 - - ( J  + - -  
h ~ 

1 o (p~_,,~+, _ p;.~+, __ ~ . ~  + p~+,.~) 

4abGL ~ 

T,h { (A,)i,~ [ a 2 ' - -  Pi,~+1 -[- Pi+l,k) Pi,k 4abOi, ~ ~ -  (P~-l,k+l - -  P~,t~ 2 

(P~,'-1,k- 2P~,k + P~2+,,k)] + Bi,k} + ALkRLk, 

(11) 

(12) 

(13) 
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w h e r e  

R ~ = 0  ~ - +  +~ , 0..<. ~ ~< 1. (]_4) 

Equa t ions  (12) and (13) a r e  c a l c u l a t e d  f r o m  l e f t  to  r igh t ,  i . e . ,  beg inn ing  f r o m  the  b o u n d a r y  cond i t ions  
s p e c i f i e d  at  the  l e f t - h a n d  end of the  i n t e g r a t i o n  i n t e r v a l  (x = l~). The d i f f e r e n c e  a p p r o x i m a t i o n  fo r  the  s a m e  
equa t i ons  can  be  d e r i v e d  in s i m i l a r  m a n n e r  in the  f o r m  

= + P~-,.~) , , __ P~.~+~ - -  P~.~ (P~+~ ,kJ-I 
T 

] }/ -F - - - ( P ~ + , , k  - -  2~,,, J- P ~ . ~ )  -t- A~,a h~,h4-R~ ~,, (15) 
h $ 

T~ I (AO~,~ [ ,~ ~ ~ ~ , _p~ .~+~  
P~,~ [ 4ab• h - T  (P~+~'~+I - -  Pi,~ q- P H , ~ )  

-t- h---q--- (Pi+I ,~ - -  2P~,~ q- P H , ~ )  -t- Bi,~ A~,~ q- Rl.~. (16) 

Equa t ions  (15) and (16) a r e  c a l c u l a t e d  f r o m  r i g h t  to  lef t .  We note tha t  when ~ = 0 both  f o r m s  of the  
a p p r o x i m a t i o n s  (12), (13), (15), and (16) l e ad  to the  i den t i ca l  c l a s s i c a l  e x p l i c i t  d i f f e r e n c e  s c h e m e .  F o r  (r 
= 1 we f ind a n o t h e r  l i m i t  c a s e .  Mu l t i p ly ing  (12) and (13) by  h 2 and n e g l e c t i n g  the  s m a l l  quan t i ty  h2Ri,k, we 
d e r i v e  the  fo l lowing  f o r m u l a s  fo r  the  c a l c u l a t i o n  of 1 D and T at the  nodes  of the  a p p r o x i m a t i o n  g r i d :  

= - -  " - -  ~O~ k "-k (SOi h) 2 -k abA~,~ C* (17) 

- -  Pi,k+l - -  Pi,k -}- i+l.k) "4- (l O) ( i - - l , k  - -  2Pi,k "J- Pi+l,k)] n u h'eBi.t~ Ai,~., 

w h e r e  

- -  ~) (Pi-l ,k  - -  2P~.k ~- , , = . , -- + P~-~,,OI C* 8P~ ~O i ~ + . ( ~ a b  [cr(P~-"k+' i,k + ~+,,k) + (1 h2Ai ~Oi k , 

h g 8 = (is) 

Analogously, on the basis of (15) and (16) we can derive the working formulas for T and P, calculated 
from right to left: 

[ V "--o], 2abhi.~ - -  661 k + (66~,~) ~+ abhi,~ P/,n+, -- ~ 

{ 2 T~.k (A,)~,h [a (~+, .k+~ - -  P,.,~+I - -  ~ ~ + P~-, ,D 
Ttm+i = Ti, ~ + ~ ~ 4abOt,h 

2 ' ~ } /  (20) + (1 - - o )  (P~+,.k - -  P~,k + P H . ~ ) ]  + h2B~.~ a~.~, 

w h e r e  

D = ~P,.~0,.~ + @ to ( P ~ + , -  ~,.~ + ~-,.~) + (1 - -  a) (P~+,.~ - -  2~,.~ + ~_, .~)1 . 
~ | J { ,  

A f t e r  we have  c a l c u l a t e d  P and T f r o m  (17) and (18) o r  f r o m  (t9) and (20), we d e t e r m i n e  G f r o m  (3). 

It should  be  po in ted  out tha t  in the  s p e c i a l  e a s e  in which  T = eons t ,  Z 0 = cons t ,  and m = 0, s y s t e m  (1)- 
(3) d e g e n e r a t e s  into the  f a m i l i a r  s y s t e m  of equa t ions  fo r  the  n o n s t e a d y  i s o t h e r m a l  mot ion  of an idea l  gas  

OG a* c)P (21) 
P 

Ox Ot 
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TABLE 1. Comparison of the Theoretical Data in the Use of Various 
Explicit Difference Schemes 

I ( x / h ~ l )  I I  ('Uh-~=16) . . I I I  ('~/h2=321 

P I T 0 P ] T [ G P T G 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

0 
0,2 
0,4 
0,6 
0,8 
1,0 

Note: cortes 
corres )ond to 

1,20111,679 0,682 
1,16711,457 0,775 
1,129 1,424 0,824 
1,085 1,411 0,868 
1,034 1,397 0,927 
0,972 1,369 1,000 

1,201 1,679 0,788 
1,158 1,535 0,816 
1,Ill  1,440 0,884 
1,060 1,417 0,921 
1,002 1,406 0,954 
0,936 1,377 1,000 

1,201 1,679 0,847 
1,151 1,568 0,853 
1,101 1,479 0,891 
1,046 1,430 0,936 
0,985 1,414 0,966 
0,916 1,387 1,OOC 

1,201 1,679 0,887 
1,146 1,576 0,889 
1,092 1,505 0,904 
1,034 1,452 0,937 
0,971 1,424 0,969 
0,899 1,395 1,000 i 

1,2011 
1,169 
1,132 
1,089 ! 
1,039 
0,977 

1,201 
1,158 
1,112 
1,061 
1 002 o:9351 
1,201! 
1,151 
1,1o1! 
1,045 
0,983 
0,913 

1,201 
1,146 
1,091 
1,033 
0,968 
0,896 

1,679 
1,450 
1,424 
1,411 
[,398 
[,382 

1,679 
[,529 
1,436 
1,416 
1,404 
1,393 

1,679 
1,567 
1,474 
1,428 
1,413 
1,404 

1,679 
1,576 
1,504 
1,45G 
1,423 
1,411 

0,660 
0,763 
0,811 
0,860 
0,928 
1,000 

0,781 
0,815 
0,887 
0,923 
0,961 
,000 

L845 
},854 
1,879 
),943 
),973 
,000 

),888 
),891 
0,909 
0,944 
0,977 
1,000 

1,201 
1,170 
1,134 
1,092 
1,043 
0,981 

1,201 
1,159 
1,113 
1,062 
1,004 
0,937 

1,201 
1,152 
1,102 
1,046 
0,984 
0,914 

1,201 
1,146 
1,092 
1,034 
0,969 
0,897 

1,679 
1,446 
1,424 
1,412 
1,398 
1,382 

1,679 
1,524 
1,434 
1,416 
1,004 
1,392 

1,679 
,1,566 
1,472 
1,427 
1,413 
1,403 

1,679 
1,576 
1,503 
1,448 
1,422 
1,411 

0,644 
0,752 
0,801 
0,855 
0,925 
1,0O0 

0,773 
0,812 
0,884 
0,921 
0,959 
1,000 

0,840 
0,850 
0,896 
0,942 
0,973 
1,000 

0,884 
0,888 
0,907 
0,944 
0,977 
1,000 

)ond to the explicit classical scheme of the grid method; II and III 
scheme involving the use of asymmetrical difference equations (17) 

and (18) when o = 1. The results giving in the table have been rounded off to the 
third significant figure. When } = O for } = 0 . . . . .  1.0 P = 1.201; T = 1.443; 
G = 0 .  

OP _ b* 6~ - - j  

Ox P 

w h e r e  

a* = const, b* := consI, 

or  to the  s y s t e m  e q u i v a l e n t  to the above:  

a P 1 c~ P ~ 

Ot 4a'b*(} Ox 2 ' 
(22) 

ap ~ 
2b*G ~. 

ax 

From (17)-(20), as a special case we can derive the finite-difference formulas for the calculation of 
the parameters of isothermal gas flow. As we see from (14), the error  in the approximation of the differen- 
tial equations (I)-(3) by the difference equations (17)-(20) is of the order of O(h) when cr ~ 0. When ~ = 0 
the magnitude of the error  will be at a minimum, while it reaches a maximum for cr = I. Here the errors  
in the difference formulas (17)-(20) are opposite in sign. This circumstance serves as the basis for the 
various modifications of the grid method involving the use of the above-considered difference schemes which 
are characterized by a higher degree of accuracy for the resulting numerical solutions. In particular, these 
include the so-called intermittent method and the method of the arithmetic mean. The intermittent method 
involves the alternating use of Eqs. (17)-(20). For example, the odd time layers are calculated from (17) 
and (18), while the even layers are calculated from (19) and (20). 

In using the method of the arithmetic mean we find that the calculation of the unknown quantities P and 
T for each time layer is accomplished as follows: formulas (17) and (18) are used to calculate the equations 
from left to right; formulas (19) and (20) are used to calculate the equations from right to left. As the final 
values for the unknowns at each layer we use the arithmetic mean of the corresponding results from two 
calculations. As shown for the linear parabolic equations [3], with an increase in the parameter ~ the cor- 
responding stability conditions for the difference schemes under consideration become less rigorous. When 
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o- = 1 the analogous difference scheme for one l inear parabolic equation is absolutely stable. As demon-  
strated by numerical  calculations (Table 1), in the case of the system of equations (1)-(3) the stability 
l imitations in the use of the above-considered difference schemes exhibit the same tendency toward weak- 
ening with a change in the quantity ~ as in the l inear case. 

Table 1 shows selected resul ts  of calculations with respec t  to the conditions cited in [2], with the use 
of difference schemes  of the explicit c lass ical  scheme of the grid method, and with the use of a symmet r i ca l  
difference equations for  ~ = 1. As we can see f rom a comparison of the resul ts ,  for var ious relat ionships 
between the step h and r the maximum divergence with respect  to P and T does not exceed approximately 
1% (at the point x = 1.0), and with respec t  to G~4%. The difference schemes considered here  thus yield 
virtually identical results; however, schemes involving the use of asymmetrical difference equations per- 
mit us to use a substantially greater time step ~- (greater by a factor of approximately 30 for the conditions 
of the specific example). The noted advantages of these schemes make their application extremely effective 
for gas and thermodynamic calculations of main gas conduits, where the expenditure of machine time in the 
design of a single gas-conduit segment becomes substantial when using conventional explicit schemes. 

N O T A T I O N  

P 

T, T* 
G 
k 
D , f  

Z 0, R 
A 
K 
t 
X 

"r, h 

is the pressure ;  
are,  respect ively,  the gas and soil tempera tures ;  
is the weight flow rate; 
is the coefficient of hydraulic resis tance;  
are ,  respect ively,  the d iameter  and area  of the tube c ross  section; 
are,  respect ively,  the coefficient of compress ib i l i ty  and the gas constant; 
is the heat equivalent of work; 
is the coefficient of heat t r ans fe r  f rom the gas to the soil; 
is the time; 
is the coordinate along the axis of the gas conduit; 
are,  respect ively,  the t ime step and the coordinate. 

1. 

2. 

3. 

4. 
5. 
6. 
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